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Soil salinity
f ancillary sensor data, such as bulk soil electrical conductivity or remotely sensed
imagery data, are commonly used to characterize spatial variation in soil or crop properties. Geostatistical
techniques like kriging with external drift or regression kriging are often used to calibrate geospatial sensor
data to specific soil or crop properties. More traditional statistical methods such as ordinary linear regression
models are also commonly used. Unfortunately, some soil scientists see these as competing and unrelated
modeling approaches and are unaware of their relationship. In this article we review the connection between
the ordinary linear regression model and the more comprehensive geostatistical mixed linear model and
describe when and under what conditions ordinary linear regression models represent valid spatial
prediction models. The formulas for the ordinary linear regression model parameter estimates and best
linear unbiased predictions are derived from the geostatistical mixed linear model under two different
residual error assumptions; i.e., strictly uncorrelated (SU) residuals and effectively uncorrelated (EU)
residuals. The theoretically optimal (best linear unbiased) and computable (linear unbiased) predictions and
variance estimates derived under the EU error assumption are examined in detail. Statistical tests for
detecting spatial correlation in LR model residuals are also reviewed, in addition to three LR model validation
tests derived from classical linear modeling theory. Two case studies are presented that highlight and
demonstrate the various parameter estimation, response variable prediction and model validation
techniques discussed in this article.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction
The collection of apparent soil electrical conductivity (ECa) survey
data for the purpose of characterizing various spatially referenced soil
properties has received considerable attention in the soils literature
over the last two decades (Corwin and Lesch, 2005). Although now
commonly used in many precision agriculture survey applications,
most of the original interest in ECa survey data was motivated by the
need to characterize and map soil salinity in a cost effective manner
(Hendrickx et al., 2002; Rhoades et al., 1999). The need for such
surveying work is expected to increase over time, as more agricultural
land becomes degraded due to salinization.

Soil conductivity survey data represents just one type of ancillary
sensor data that is commonly collected in order to help identify,
quantify, and/or predict various soil or crop properties. Being spatial in
nature (i.e., referenced across a spatial domain), it is both natural and
often quite reasonable to consider some type of geostatistical
modeling technique when attempting to calibrate such survey data
l rights reserved.
to a specific (soil or crop) response variable. Numerous examples exist
in the literature of geostatistical or spatial modeling approaches; the
textbooks by Schabenberger and Gotway (2005), Schabenberger and
Pierce (2002), Webster and Oliver (2001), Wackernagel (1998) and
Isaaks and Srivastava (1989) are particularly relevant to the above
mentioned calibration problem.

In addition to the commonly used geostatistical techniques like
kriging with external drift or regression–kriging, ordinary linear
regression models are also often employed when calibrating such
data. Most statisticians and pedomatricians understand the inter-
relationships between these two modeling approaches, or more
specifically that ordinary regression models actually represent a
special case of the external drift or regression–kriging approaches.
However, it has been our experience that many soil scientists do not
fully appreciate these relationships and in certain cases see these as
either competing or unrelated modeling techniques. Additionally, we
have personally encountered more than a few cases where a scientist
professed a strong belief in one of these two particular modeling
approaches (either for reasons of apparent statistical simplicity or
perceived statistical rigor), irrespective of the appropriate modeling
approach suggested by the actual data analysis.

mailto:scott.lesch@ucr.edu
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In the mainstream statistical literature, it is well known that
ordinary linear regression models represent a special case of a much
more general class of models commonly known as linear regression
models with spatially correlated errors (Schabenberger and Gotway,
2005), hierarchical spatial models (Banerjee et al., 2004), or
geostatistical mixed linear models (Haskard et al., 2007). This broader
class of models includes many of the geostatistical techniques familiar
to pedomatricians, such as universal kriging, kriging with external
drift and/or regression–kriging, as well as standard statistical
techniques like ordinary linear regression (LR) and analysis of
covariance (ANOCOVA) models.

The primary objective of this manuscript is to describe when and
under what conditions (i.e., what set of assumptions) ordinary
regression models represent valid linear spatial prediction models.
To facilitate this discussion, we first present a review of the
geostatistical mixed linear modeling approach. (Note that linear
geostatistical models can typically be recast as “mixed” linear models,
because the stochastic component usually contains more than one
error term.) This review includes a brief discussion about the
geostatistical mixed linear model (MLM) residual distribution
assumptions, best linear unbiased estimates, and best linear unbiased
predictions. The connection between an ordinary LR model and the
geostatistical MLM is highlighted, specifically with respect to how the
LRmodel can be derived from the geostatistical MLMunder one of two
more restrictive sets of residual distribution assumptions (i.e., the
assumption of either strictly uncorrelated residuals or effectively
uncorrelated residuals). Special emphasis is directed towards quanti-
fying the practical effects that these residual distribution assumptions
have on LR model parameter estimates and survey predictions. We
also review some statistical tests that can be used to detect spatial
correlation in LR model residuals (particularly the Moran test), and
discuss three useful LR model validation tests that arise from classical
linear modeling theory. Finally, two salinity survey case studies are
presented that highlight and demonstrate the various model estima-
tion, validation, and response variable prediction techniques dis-
cussed in this manuscript.

As alluded to above, we will argue that ordinary LR models can
represent useful and valid (although not always technically optimal)
spatial predictionmodels. However, a few caveats are in order. First, in
the discussion that follows, we will assume that a sufficiently dense
spatial grid of ancillary sensor data has been collected across the field
or area of interest, such that the analyst need not worry about
generating predictions “off-the-grid”. Hence, linear prediction tech-
niques such as cokriging or multi-stage hierarchical spatial models are
not considered here. Second, we assume that all calibration soil
samples are co-located with specific, identifiable survey locations.
Third, while the modeling techniques discussed here can be extended
to non-Gaussian (i.e., non-multivariate normal) error assumptions
(Gotway and Stroup, 1997) and/or nonlinear models (Schabenberger
and Pierce, 2002; Schabenberger and Gotway, 2005), we will limit the
current discussion to linear Gaussian error models. Forth, we have
chosen to use the geostatistical mixed linear modeling framework to
motivate this discussion (rather than more traditional kriging
derivations) becausewe believe that (i) the direct connection between
the various linear prediction approaches is much easier to understand
from this viewpoint, and (ii) the geostatistical mixed linear model can
be defined to be equivalent to many (although certainly not all)
commonly used kriging techniques.

Finally, we also wish to emphasize that the topic of optimal
sampling strategies for estimating spatial linear prediction models is
not discussed in any significant detail here. Both design-based
(probabilistic) and model-based sampling strategies can be employed
to estimate suchmodels. Design-based sampling strategies have awell
developed underlying theory and can be clearly useful in many spatial
applications (Thompson, 1992; Brus and de Gruijter, 1993). Likewise,
model-based sampling strategies have been applied to the optimal
collection of spatial data byMüller (2001); the specification of optimal
designs for variogram estimation by Müller and Zimmerman (1999),
Warrick and Myers (1987), and Russo (1984); the estimation of
spatially referenced LR models by Lesch (2005) and Lesch et al. (1995),
and the estimation of geostatistical linear models by Brus and
Heuvelink (2007), Minasny et al. (2007), and Zhu and Stein (2006).
However, in this article we will assume that some type of valid
sampling strategy already exists and instead focus primarily on model
calibration and prediction issues.

2. Spatial linear models

2.1. The geostatistical mixed linear model

In a typical field survey where some type of ancillary sensor
readings are collected, the general goal is to use this sensor data to
help predict a specific, unobserved soil property. As just one example,
assume that we have acquired a dense grid of electrical conductivity
survey data across a particular field, collected soil samples at some of
these survey locations, and then wish to use these sensor and
calibration sample readings to estimate a model (that can in turn be
used to predict the detailed spatial pattern of the soil property). Define
the relationship between the soil property measurement, y, and
sensor data, q, to be:

y ¼ g qð Þ þ n ð1Þ
where g(q) represents some unknown function of the vector of k-
collocated sensor readings and corresponding survey locations, and ξ
represents some type of spatial random error component. Now
assume that Eq. (1) can be adequately approximated using the
following geostatistical mixed linear model (Haskard et al., 2007):

y ¼ Xβ þ η sð Þ þ e sð Þ ð2Þ

where y represents an (n×1) vector of observed soil property data, s
represents the corresponding vector of paired (sx, sy) survey location
coordinates, X represents an (n×p) fixed data matrix that includes
observed functions of sensor readings and possibly also the survey
location coordinates, β represents a (p×1) vector of unknown
parameter estimates, η(s) represents a 0-mean, second order station-
ary spatial Gaussian error process, and ε(s) represents a vector of
jointly independent Normal(0, σn

2) random variables. Typical station-
ary spatial structures for η(s) are well documented in the spatial-
statistical and geostatistical literature; examples in 2-dimensions
include the isotropic and anisotropic exponential and spherical
covariance structures, as well as the Matérn class of covariance
functions (Haining, 1990; Cressie, 1991; Wackernagel, 1998; Webster
and Oliver, 2001; Schabenberger and Gotway, 2005). Note also that
the second ε(s) error component is usually referred to as the “nugget”
effect in the geostatistical literature (Webster and Oliver, 2001).

Eq. (2) represents a versatile spatial linear prediction model that
can incorporate various types of modeling assumptions. The
deterministic component of the model (Xβ) can be defined to
include trend surface parameters and/or fixed blocking effects, in
addition to various hypothesized soil property/sensor relationships.
As noted above, the stochastic error terms (η(s)+ ε(s)) can be parame-
terized to match the geostatistical covariance functions commonly
used in spatial prediction and kriging. Indeed, ordinary kriging (OK),
universal kriging (UK), and kriging with external drift (KED) and/or
regression kriging (RK) models can all be derived as special cases of
Eq. (2) (Schabenberger and Gotway, 2005; Haskard et al., 2007).
Likewise, if the errors are assumed to be spatially uncorrelated (i.e.,
η(s)=0), then Eq. (2) reduces to an ordinary linear model. Depending
upon how the design matrix X is specified, in this latter scenario one
can obtain an ordinary regressionmodel, a trend surfacemodel, or an
ANOCOVA model, etc.
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In themost general case, Xβmay containmultiple fixed effects and
the residual errors are assumed to exhibit some form of spatially
correlated structure. Assume that the corresponding residual errors
follow a Gaussian (e.g., multivariate Normal) distribution defined as

η sð ÞfG 0;σ2
s C θð Þ� �

e sð ÞfG 0;σ2
nI

� �
Cov η sð Þ; e sð Þf g ¼ 0
Z
Var η sð Þ þ e sð Þf g ¼ σ2

sC θð Þ þ σ2
nI ¼ Σ

ð3Þ

where Σ is assumed to be positive definite and C(θ) represents the
correlation function of a second order stationary error process (for
example, C(θ) could represent an isotropic exponential correlation
function with range parameter θ). Then using standard mixed linear
modeling theory (Harville,1990; Cressie, 1991; Harville and Jeske,1992)
one can show that the best linear unbiased estimator (BLUE) for β is

β̂ ¼ XTΣ−1X
� �−1

XTΣ−1y ð4Þ

with a corresponding variance of

Var β̂
� �

¼ XTΣ−1X
� �−1

: ð5Þ

Likewise, one can show that the best linear unbiased prediction
(BLUP) for yz (where yz represents the remaining (non-sampled)
survey locations can be expressed as

ŷz ¼ Xz β̂ þ ΣyzΣ
−1 y−X β̂
� �

ð6Þ

where Xz represents the design matrix associated with yz and Σyz

represents the model based covariance matrix between yz and the
observed sample data y. Additionally, the corresponding variance
estimate associated with this prediction vector is

Var yz− ŷz

� �
¼ Σz−ΣyzΣ

−1ΣT
yz

þ Xz−ΣyzΣ
−1X

h i
XTΣ−1X

� �−1
Xz−ΣyzΣ

−1X
h iT

ð7Þ

where Σz represents the model based variance matrix of yz (Gold-
berger, 1962; Cressie, 1991).

When the covariance structure is known up to a proportionality
constant in the geostatistical mixed linear model (i.e., Σ=τ2V, where V
is assumed known a priori), the β parameter vector in Eq. (2) can be
estimated using generalized least squares (Graybill, 1976; Rao and
Toutenburg, 1999). However, the specific Σ parameter values are
rarely known a priori. In practice, the β parameter vector and Σ
variance structure must be jointly estimated from the sample data,
typically using maximum likelihood (ML) or restricted maximum
likelihood (REML) estimation techniques (Littell et al., 1996). In such
situations it is generally necessary to collect a fairly large amount of
sample data in order to reasonably estimate the parameters associated
with the covariance structure when even the simplest isotropic
covariance functions are employed (Irvine et al., 2007).

2.2. Ordinary linear regression (LR) models

Consider the structure of the variance components shown in
Eq. (3). This variance structure (in the full geostatistical mixed linear
model) can be expressed as

Var η sð Þ þ e sð Þf g ¼ σ2
sC θð Þ þ σ2

nI ¼ Σ ¼ τ2V
for τ2 ¼ σ2

s þ σ2
n; V ¼ αC θð Þ þ 1−αð ÞI; and α ¼ σ2

s =τ
2:

ð8Þ

The degree of spatial correlation structure in the residual error
distribution is determined by σs

2 (the partial sill) and the assumed
structure for C(θ), where (for isotropic functions) the scalar value of θ
controls the range for an isotropic process. Clearly, as either σs
2→0 or

θ→0, the residual errors become spatially uncorrelated and V
becomes proportional to an identity matrix. More importantly, if/
when the effective (or absolute) range for C(θ) is less than the
minimum separation distance between the calibration sampling
locations, the residual errors again become approximately (or strictly)
spatially uncorrelated.

This latter point is particularly relevant when calibrating soil
property information tomany types of remotely sensed survey data. In
properly planned salinity surveys where the auxiliary sensor data are
expected to bewell correlated with the response variable of interest, it
is often possible to sample beyond the expected effective range of
spatial correlation in the residual pattern. For example, field-scale soil
salinity patterns can often be mapped with very high precision using
bulk soil electrical conductivity survey data and ordinary LR models,
since the residual error distribution typically exhibits only short range
spatial correlation (Lesch et al., 1995; Corwin & Lesch, 2005; Lesch
et al., 2005). Therefore, a simpler LR model can be used in place of the
full geostatistical MLM to generate a map with a high degree of
prediction accuracy, provided that an appropriate sampling strategy is
employed (Lesch, 2005). This is especially advantageous in commer-
cial applications, since LR models can be estimated using far less
sample data (i.e., typically 10 to 15 sites).

In principal, an LRmodel can be used in place of themore elaborate
geostatistical MLM whenever the model is assumed to exhibit either
(i) strictly uncorrelated (SU) residual errors, or (ii) effectively
uncorrelated (EU) residual errors. Note that the SU residual assump-
tion implies that σ s

2 =0 and thus Σ=σn
2I. Under such an assumption,

the geostatistical model collapses exactly into an ordinary LR model
and all of the usual results for ordinary regression models can be
applied in this situation. Such models are referred to as “spatially
referenced” regression models by Lesch (2005), and as “aspatial”
models by Fotheringham et al. (2002). In contrast, the (typically more
reasonable) EU residual assumption implies that a set of calibration
sample sites have been acquired where all of the minimum nearest-
neighbor distances between sampling locations exceeds the effective
range of residual spatial correlation. In this latter situation the
geostatistical model does not reduce exactly into an ordinary LR
model; for example, we can still use the available sample data to
compute the BLUE for β, but not the empirical BLUP for yz. More
specifically, both the parameter estimates and computable survey
predictions turn out to be the same under either residual error
assumption, but their statistical properties change. These estimation
and prediction concepts are discussed in detail below.

2.2.1. Parameter estimate and prediction formulas: strictly uncorrelated
residual assumption

Under the SU residual assumption, one can easily verify that
Σ=σn

2I, Σz=σn
2Iz, and Σyz=0. Thus, the BLUE for β becomes

β̂ ¼ XTX
� �−1

XTy ð9Þ

with a corresponding variance of

Var β̂
� �

¼ σ2
n XTX
� �−1

: ð10Þ

Additionally, the BLUP for yz reduces to

ŷz ¼ Xz β̂ since Σyz ¼ 0
� � ð11Þ

with a corresponding variance estimate of

Var yz− ŷz

� �
¼ σ2

n Iz þ Xz XTX
� �−1

XT
z

� �
: ð12Þ

Corresponding formulas for both individual and field average
prediction estimates can also be immediately derived from standard
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linear modeling theory. For example, individual survey site predic-
tions (and their corresponding variance estimates) become

ŷ0 ¼ xzβ̂
Var y0−ŷ0

� � ¼ σ2
n 1þ xz XTX

� �−1
xT
z

� � ð13Þ

where xz represents the (1×p) design vector associated with the
prediction site. Likewise, the average prediction associated with the
entire non-sampled survey grid can be computed as

ŷave ¼ xave β̂
Var yave− ŷave

n o
¼ σ2

n 1= N−nð Þ þ xave XTX
� �−1

xT
ave

� � ð14Þ

where xave represents the average of the N−n design vectors
associated with the non-sampled survey positions. Note that all of
these results are exactly identical to ordinary LR model parameter
estimation and prediction formulas (Myers, 1986).

2.2.2. Estimate and prediction formulas: effectively uncorrelated residual
assumption

Under the EU residual assumption, we find that Σ≈ (σn
2+σ s

2)I
where this approximation is exact if the effective range of the spatial
residual correlation structure is both finite and less than theminimum
nearest-neighbor sampling distance. When the above relationship is
exact, we again find the BLUE for β to be equal to (9), but now with a
corresponding variance of

Var β̂
� �

¼ τ2 XTX
� �−1

; ð15Þ

for τ2=σn
2+σ s

2. In practice, the calculated mean square error (MSE)
estimate can be used to yield an unbiased estimate of τ2, but this
pooled variance estimate can not be partitioned into it's individual
components without further assumptions (or prior information).
Furthermore, one can not necessarily assume that Σz=σn

2Iz or Σyz=0.
(These covariance matrices are instead determined by the assumed
η(s) spatial structure and the density of the survey grid.) Thus, rather
than Eq. (11), the BLUP for z under the EU residual assumption reduces
to a simplified version of Eq. (6); i.e.,

ŷz ¼ Xz β̂ þ αCyz θð Þ y−X β̂
� �

ð16Þ

where Cyz represents the model based correlation matrix between yz
and the observed sample data y and as before α=σ s

2/τ2. Via direct
substitution of the above variance components, the corresponding
variance estimate associated with this BLUP can be easily shown to be

Var yz− ŷz

� �
¼ τ2 Ωz−ΩyzΩT

yz þ Xz−ΩyzX
� �

XTX
� �−1

Xz−ΩyzX
� �Th i

ð17Þ

where Ωz=αCz(θ)+(1−α)Iz and Ωyz=αCyz(θ).
Clearly, Eq. (16) is not of much practical use, since by assumption

the sample data will yield no information about the short-range
spatial correlation structure of the residuals. Thus, in the absence of
prior information, one can not estimate either Cyz or α in Eq. (16) and
hence the empirical BLUP for yz can not be constructed. To circumvent
this problem, we can instead use the less efficient (but computable
and still unbiased) linear predictor given in (11); i.e., ŷz=Xzβ̂. After
some straight-forward matrix algebra (see Proof 1A in the Appendix),
we find that the corresponding variance estimate associated with this
linear unbiased predictor (LUP) is

Var yz− ŷz

� �
¼ τ2 Ωz−2 �ΩyzX XTX

� �−1
XT
z þ Xz XTX

� �−1
XT
z

h i
: ð18Þ
Likewise, the corresponding variance estimate associated with a
single new prediction on the survey grid becomes

Var y0− ŷ0

� �
¼ τ2 1−2 �ωyzX XTX

� �−1
xT
z þ xz XTX

� �−1
xT
z

h i
ð19Þ

where xz is again the (1×p) design vector associated with the new
prediction site and ωyz represents the spatial correlation vector
between the calibration data (y) and y0; i.e., ωyz=α·cyz(θ).

It is interesting to note that even when we resort to using the
computable LUP (under the EU residual assumption), we still can not
calculate the corresponding variance estimates. For this reason,
practitioners instead typically use the ordinary variance formulas
shown in Eqs. (12) and (13). Fortunately, provided that the ancillary
sensor data exhibits a sufficiently smooth spatial structure, these
ordinary (SU) variance formulas tend to be conservative. To under-
stand intuitively how Eq. (19) can produce a variance estimate that is
less than Eq. (13), consider the following scenario. Suppose that the
new prediction site is arbitrarily close to the ith existing calibration
site and assume that the ancillary sensor data exhibits a strictly
continuous (i.e., no nugget) spatial structure, such that xz→xi as the
separation distance between the two sites becomes arbitrarily small.
Additionally, the ith component of the ωyz correlation vector must
converge to α (for 0bα≤1) and all remaining components converge to
0 (under the EU residual assumption). Substituting these limiting
values into Eq. (19) yields

Var y0− ŷ0
� �

¼ τ2 1−2α � xi XTX
� �−1

xT
z þ xz XTX

� �−1
xT
z

h i
≈τ2 1þ 1−2αð Þ � xz XTX

� �−1
xT
z

h i
since xi≈xzð Þ

ð20Þ

which must clearly be smaller than Eq. (13) 8α N0.
In summary, both the SU and EU residual assumptions lead to the

same set of best linear unbiased parameter estimates. Thus, all of the
general statistical theory associated with parameter estimation in
ordinary linear regression models is immediately applicable (under
either assumption). Additionally, the SU assumption leads to the best
linear unbiased, ordinary regression model predictor ŷz=Xzβ̂. In
theory, the EU assumption leads to a different set of best linear
unbiased predictions. However, the simpler LUP ŷz=Xzβ̂ can again be
used under this latter assumption, along with the ordinary variance
formulas. In most cases these formulas will produce conservative
variance estimates, provided that the ancillary sensor data exhibits a
sufficiently smooth spatial structure. Additionally, these LU predic-
tions will exhibit only trivial losses in efficiency (compared to their
BLU counterparts) if/when σ s

2≈0 or θ≈0.

2.2.3. A regression based prediction formula for computing Prob(y0Nc)
In many practical survey applications, determining the probability

that a new prediction exceeds some specific threshold value is also of
interest. In the geostatistical literature, indicator kriging and dis-
junctive kriging are two commonly used modeling techniques for
estimating such probabilities (Matheron, 1976; Deutsch and Journel,
1992; Chilès and Delfiner, 1999; Webster and Oliver, 2001); note that
cokriging equivalent forms of these techniques are sometimes used
when ancillary sensor data is available.

Although not commonly discussed in most classical linear
modeling textbooks, regression models can also be used to produce
such probability estimates, at least from the Bayesian viewpoint. More
specifically, given the SU residual assumption and upon adopting a
Bayesian perspective, the probability that an unobserved y0 lies
within the interval (a, b) can be computed as

πi a; b½ � ¼ Prob aVy0Vbð Þ ¼ ∫ h

g
t n−pð Þdt ð21Þ

where t(n −p) represent a central t-distribution having n−p degrees
of freedom (i.e., the regression model residual degrees of freedom),
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g ¼ a− ŷ0
� �= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ŷ0
� �q

and h ¼ b − ŷ0
� �= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ŷ0
� �q

(Press,1989: assum-

ing vague prior distributions on the model parameters). These latter
probability predictions can in turn be used to calculate a range interval
estimate (RIE) defined as

RIE a; b½ � ¼ 100
N−n

∑
N−n

i¼1
πi a; b½ � ð22Þ

which represents a prediction of the percentage of non-sampled sites
(on the survey grid) that exhibit soil property values falling within the
interval (a, b). For example, one might be interested in predicting the
percentage of survey sites in a field with salinity levels in excess of
4 dS/m. Eqs. (21) and (22) can be used to calculate this value, while
simultaneously adjusting out the “shrinkage-effect” inherent in the
associated regression model predictions.

Lesch et al. (2005) discuss the above estimates in more detail and
show multiple examples of their application. Technically, the above
calculations are only strictly valid under the SU residual assumption,
since a precise estimate for var{ŷ0} can not be computed under the
weaker EU assumption (i.e., without a priori knowledge of the short-
range spatial correlation structure).

3. Residual and prediction validation tests for LR models

3.1. The Moran test statistic

If an ordinary LR model is to be successfully used in place of the
geostatistical MLM, then more restrictive modeling assumptions need
to be met. In addition to the Gaussian error process, the critical
assumption in the LR model is the EU residual assumption. In a spatial
context, this assumption implies that the residual errors associated
with the calibration sample site locations are (at least approximately)
uncorrelated. Thus, some type of test for residual spatial correlation
should always be performed before deciding to adopt the ordinary LR
modeling approach.

A formal test for spatial correlation in the residual pattern can be
carried out using either a nested likelihood ratio test or via the Moran
residual test statistic (Upton and Fingleton, 1985; Haining, 1990;
Tiefelsdorf, 2000; Schabenberger and Gotway, 2005). The likelihood
ratio test can only be performed after first estimating a suitable
geostatistical MLM (see pages 343–344 of Schabenberger and Gotway,
2005 for more discussion of this topic). In contrast, the Moran test can
be carried out directly on the ordinary LR model residuals.

As originally introduced by Brandsma and Ketellapper (1979), the
Moran test statistic was designed to detect spatially correlated
residuals in conditionally and/or simultaneously specified spatial
autoregressive models (Ripley, 1981; Schabenberger and Gotway,
2005). However, it can also be used to assess the EU residual
assumption in the geostatistical modeling framework. The Moran
residual test statistic (δM) is defined as

δM ¼ rTWr
rTr

ð23Þ

where r=y−Xβ̂ (e.g., the vector of observed model residuals), W
represents a suitably specified proximity matrix, and β̂ is calculated
using Eq. (9). While the specification of W can be application-specific,
in most soil survey applications it is generally reasonable to specifyW
as a scaled inverse distance squared matrix. Under such a specifica-
tion, where dij represents the computed distance between the ith and
jth sample locations, the {wij} elements associated with the ith row of
the W matrix are defined as

wii ¼ 0 and wij ¼ d−2ij = ∑
n

j¼1
d−2ij ; ð24Þ

respectively.
Brandsma and Ketellapper (1979) showed that the first two
moments of δM are

E δMð Þ ¼ tr MWð Þ= n−pð Þ ð25Þ
and

Var δMð Þ ¼ tr MWMWT� �þ tr MWMWð Þ þ tr MWð Þf g2
n−pð Þ n−pþ 2ð Þ − E δMð Þf g2 ð26Þ

where E( ), Var( ), and tr( ) represent expectation, variance, and trace
functions; n and p represent the number of sample sites (calibration
sample size) and regression model parameters (including the
intercept); and M is defined to be M= I−X(XTX)−1XT. The correspond-
ing Moran test score can then be computed as

zM ¼ δM−E δMð Þð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var δMð Þ

p
ð27Þ

and compared to the upper (one-sided) cumulative standard Normal
probability density function.

A test score in excess of 1.65 (α≈0.05) is normally interpreted as
being statistically significant. Provided that the fixed effects in the
regression model have been correctly specified, such a test score
implies that the ordinary LR model residuals exhibit significant spatial
correlation. In this situation, the LR parameter estimates and survey
predictions may be highly inefficient and the mean square error
estimate and parameter test statistics may be substantially biased. If
sufficient data is available (or additional data can be collected), then a
suitable spatial or geostatistical linear modeling approach should
instead be employed.

3.2. Techniques for assessing the Gaussian (Normal) error assumption

In addition to the EU residual assumption, onemust also verify that
the LR model residuals satisfy the usual standard Gaussian error
assumption and that the hypothesized model is correctly specified.
Fortunately, most well known residual analysis techniques used in an
ordinary regression analysis are just as useful when applied to a
spatially referenced LRmodel. These include assessing the assumption
of residual Normality using quantile–quantile (QQ) plots and the
Shapiro–Wilk test (Shapiro and Wilk, 1965), detecting outliers and/or
high leverage points (plots of internally or externally studentized
residuals), and detecting model specification bias (residual versus
prediction plots, partial regression leverage plots, added variable
plots, etc.).

The standard jack-knifing techniques commonly used to assess the
predictive capability of an ordinary regression model are also directly
applicable to the LR model in the spatial setting. Most standard
statistical software packages can readily produce jack-knifed residual
and/or prediction estimates in a computationally efficient manner.
(Note that in the geostatistical literature, jack-knifing is typically
referred to as cross-validation.) Cook and Weisberg (1999) and Myers
(1986) offer a good review of many relevant regression model
diagnostic and assessment techniques.

3.3. Additional prediction validation tests for the LR model

Suppose that a plausible LR model has been specified that
describes some type of soil property / sensor data relationship.
Suppose also that after acquiring a data set of n samples, a Moran or
likelihood ratio test verifies that the EU residual assumption is
reasonable and that the other usual residual assumptions hold. Hence,
this spatially referenced LR model can be conveniently expressed in
matrix notation as y=Xβ+ε(s), where ε(s)~N(0,τ2In) and y and X are
defined as in Eq. (2). In most surveys, the ultimate goal will be to use
the fitted equation for prediction purposes, but assume first that we
wish to assess the “validity” of our proposed LR model. Assume also



Table 1
Basic EM38 and soil salinity summary statistics: Indio lettuce field

Variable Units N Mean Std. Dev. Min Max

EMV mS/m 2040 63.67 13.87 36.25 119.25
EMH mS/m 2040 38.02 10.28 17.63 81.75

Variable Units Depth N Mean Std. Dev. Min Max

0–0.6 m 12 1.86 1.18 0.72 4.22
ECe dS/m 0.6–1.2 m 12 1.93 1.28 0.26 3.92
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that it is possible to naturally split the acquired data set into two
distinct sub-sets, having n1 and n2 samples, respectively.

There are three types of statistical tests that can be readily
employed to assess the validity of the spatially referenced LR model.
These can all be expressed as F-tests (and/or t-tests), and are based on
the idea of data partitioning. To facilitate this discussion, let the two
distinct sample sub-sets represent a primary calibration set and a
secondary validation set. Given this data partition of n=n1+n2 sample
sites, assume further that we wish to fit the model using the
calibration data and then test it's prediction adequacy using the
validation data.

First, with respect to the pooled (calibration+validation) data set,
note that the pooled y vector and X matrix can be partitioned as

y ¼ y1
y2

	 

and X ¼ X1 0

0 X2

	 

ð28Þ

where the subscripts index the calibration and validation data sub-sets
and the dimension of the partitioned design matrix is (n1+n2)×2p.
Given this partition, a “composite model” F-test can be performed by
fitting the partitioned equation

y ¼ X1β1 þ X2β2 þ e sð Þ ð29Þ
and then testing if β1=β2 (Cook andWeisberg, 1999). This is one of the
more well known, standard model validation testing techniques
suggested in the statistical literature; additional details can be found
in most regression textbooks (Cook and Weisberg, 1999; Myers, 1986;
Weisberg, 1985).

However, there are two other tests that can also be easily
performed on partitioned data and are quite appropriate for directly
assessing prediction reliability. These are not commonly discussed in
introductory regression textbooks, although their theory is easily
derived from standard linear modeling techniques. In the discussion
that follows, we will refer to these as the “joint-prediction” F-test and
“mean-prediction” t-test, respectively.

The joint-prediction F-test can be performed by first estimating
the LR model using just the calibration data, next calculating the joint
set of prediction errors across the validation sites as

r2 ¼ y2−X2 β̂1 ð30Þ

and then by computing the statistic

F1 ¼ rT2V
−1r2=s21 where V ¼ Iþ X2 XT

1X1
� �−1

XT
2

� �
: ð31Þ

This test statistic, originally suggested by Lieberman (1961),
essentially defines the joint (simultaneous) prediction region for
multiple predictions from a single regression model. Given the EU
residual assumption and under the null hypothesis (i.e., that the fitted
calibration model is correct), F1 follows a central F(n2, n1−p)
distribution where n2 and n1−p represent the number of validation
sites and the (calibration) model degrees of freedom, respectively, and
s1
2 represents the estimated calibration model mean square error
(MSE) estimate (Lieberman, 1961; Rao and Toutenburg, 1999). In a
similar manner, the mean-prediction t-test can be performed by first
calculating the average prediction error as

r ¼ qTr2 where qT ¼ 1=n2; ::: 1=n2½ � ð32Þ

and then computing the statistic

t1 ¼ r= s1
ffiffiffi
h

p� �
where h ¼ 1=n2ð Þ þ qTX2 XT

1X1
� �−1

XT
2q

� �h i
: ð33Þ

Note that t1 follows a central t distribution (with n1−p degrees of
freedom) under the null hypothesis, where s1 represents the square root
of the calibration model MSE estimate (Rao and Toutenburg, 1999).
Intuitively, the composite-model F-test represents a test for non-
equivalent parameter estimates across the partitioned calibration and
prediction (validation) sample sites. In contrast, the joint-prediction
F-test assesses the ability of the regression model (fit using the
calibration data only) to make unbiased predictions at all new
validation sites, and simultaneously tests if these predictions are
within the specified tolerance (precision) of the model. The mean-
prediction t-test follows from the joint-prediction F-test, and hence
assesses the ability of the regression model to make an unbiased
prediction of the average value across the new n2 validation sites.

Like the composite model F-test, these latter two tests turn out to
be simple to implement in standard regression modeling software.
First, redefine the full regression equation to be

y ¼ Xβ þAψþ e sð Þ ð34Þ
where

y ¼ y1
y2

	 

;X ¼ X1

X2

	 

; and A ¼ 0

I2

	 

: ð35Þ

Note that the second A design matrix essentially introduces n2
additional 0/1 indicator variables into the regression model, thus Eq.
(34) can equivalently be viewed as a special type of ANOCOVA model.
In this model, the n2ψj parameter estimates can be shown to be
exactly equal to the calculated prediction errors defined in Eq. (30)
and the corresponding estimated parameter variancematrix is exactly
s1
2V (see proof A2 in the Appendix). Therefore, the two parameter tests
of Ho : ψj ¼ 08j and Ho : ∑ψj ¼ 0 produce the exact same F and t-test
statistics as those shown in Eqs. (31) and (33), respectively. Hence,
both the joint-prediction F-test and mean-prediction t-test can be
easily preformed using any standard statistical software package that
supports regression modeling.

4. Case studies

The following case studies describe two examples where an
ordinary LR modeling approach was successfully used to quantify the
relationship between soil salinity and non-invasive electromagnetic
(EM) conductivity survey data. Themodel estimation, parameter tests,
and prediction computations described in each study highlight the
various statistical issues discussed in Sections 2 and 3. All of the
statistical analyses discussed below have been performed using SAS/
STAT (SAS Inc., 1999a), SAS/IML (SAS Inc., 1999b), and the ESAP
software package (Lesch et al., 2000).

4.1. Case study I: a survey of a marginally saline lettuce field in Indio, CA

An EM survey was performed by the Coachella Valley Resource
ConservationDistrict in June2003within a 14-havegetable field located
in Indio, CA. A total of 2040 Geonics EM38 vertical (EMV, mS/m) and
horizontal (EMH,mS/m) signal readingswere collected across 29 north–
south survey transects within this field and then processed through the
USDA-ARS ESAP software package. This software selected 12 survey
locations for soil sampling, using a model-based sample design (Lesch
et al., 2000). Soil samples were collected from 0–0.6 m and 0.6–1.2 m



Fig. 1. Interpolated EMV signal map and corresponding sample site locations; Indio lettuce field.
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depths and analyzed for soil salinity (ECe, dS/m), soil saturation
percentage (%), and percent gravimetric water content (%). Table 1
presents the univariate summary statistics (mean, standard deviation,
minimum, and maximum) for the EM38 survey and soil salinity data,
respectively. Fig. 1 shows the interpolated EMV signal map for this field,
along with the spatial positions of the 12 sampling locations. The
primary goals of this survey were two-fold: (i) to construct an accurate
soil salinity inventory for the field and (ii) to determine if this field
should be leached before the fall cropping season.

The results from an exploratory regression modeling analysis
performed in ESAP suggested that the following natural log(ECe)/log
(EM) regression equation best described the soil salinity / signal
conductivity relationship in this field:

ln ECij
� � ¼ β0j þ β1j x1ið Þ þ β2j x2ið Þ þ β3j x

2
1i

� �þ eij ð36Þ

where

x1i ¼ ln EMV ;i
� �þ ln EMH;i

� �
; and x2i ¼ ln EMV ;i

� �
−ln EMH;i

� �
: ð37Þ

In Eq. (36), the subscript j=1, 2 corresponds to the two sampling
depths, i=1, 2,…, 2040 corresponds to the EM38 sampling locations,
β0j through β3j represent the two sets of regression model parameters
(which define the two depth-specific prediction functions), and the
residual errors for each sampling depth are assumed to be spatially
uncorrelated. The upper portion of Table 2 presents the key summary
statistics for each estimated regression function; these statistics
include the R2, root mean square error (RMSE) estimate, overall model
F-score an associated p-value, and the correspondingMoran test score
Table 2
Summary and prediction statistics for depth-specific ln(ECe) LR models; Indio lettuce
field

Model summary statistics

Depth R2 Root MSE F-score PrNF Moran score (δM) p-value
0–0.6 m 0.922 0.196 31.37 b0.001 0.652 0.257
0.6–1.2 m 0.798 0.490 10.54 0.004 −0.067 N0.5

Prediction Statistic 0–0.6 m depth 0.6–1.2 m depth

field average ln(ECe) 0.494 0.548
95% confidence interval (0.35, 0.64) (0.19, 0.91)
% Area of field N3.0 dS/m 10.5 25.3
and p-value. The Moran scores suggest that the EU residual
assumption is valid. Likewise, residual QQ plots (not shown) confirm
that the regression model errors follow a Normal distribution and
hence the ordinary LR modeling approach can be adopted. Addition-
ally, the R2 values suggest that these LR models can be used to
describe 92% and 80% of the 0–0.6 m and 0.6–1.2 m observed spatial
log(ECe) patterns in this field, respectively.

The spatial salinity pattern in the 0–0.6 m depth was of primary
interest in this survey. More specifically, the field was scheduled to be
leached if (i) the field average ln(ECe) level exceeded ln(2)=0.693 or
(ii)N25% of the field was predicted to exhibit 0–0.6 m depth salinity
levelsN3 dS/m. The predicted field average ln(ECe) levels (and
corresponding 95% confidence intervals) are shown in the lower
portion of Table 2, along with the estimated area of the field that is
exceeds 3 dS/m for both sampling depths. These predictions can be
automatically calculated in the ESAP software package (using Eqs. (14)
and (22), respectively). Fig. 2 shows the corresponding predicted
spatial salinity map for this field. This map was produced (within the
ESAP SaltMapper program) by interpolating the back-transformed,
individual ln(ECe) predictions onto a fine-mesh grid using an
adjustable smoothing kernel.

The results shown in Table 2 and Fig. 2 suggest that this field does
not need to be leached. The 0–0.6 m field average ln(ECe) estimate is
0.494 and only 10.5% of the individual 0–0.6 m depth predictions are
calculated to exceed 3 dS/m. Thus, neither of the specified thresholds
for implementing a leaching process are met in this field.

The prediction statistics generated by the ESAP software package
are always calculated under an SU residual assumption. As discussed
previously, Eqs. (18) and (19) can be used to determine the correct
variance estimates under the more realistic EU residual assumption,
for any a priori specified spatial covariance structure. For example, we
can compare the SU variance estimates to variance estimates derived
under an assumed spherical covariance structure with a spatial range
value ≤ sample minimum separation distance, etc.

In this specific EM survey, the minimum separation distance between
the twonearest soil sampling locationswas 88.4m. Table 3 presents some
relevant variance statistics for this field, using an alternative isotropic
spherical covariance function that exhibits a range value of either 44 or
88meters and apartial sill/total variance ratio of either 0.95 (5%nugget) or
0.5 (50% nugget). These statistics include (i) the relative variance estimate
for the average prediction across the 2028 non-sampled survey locations,



Fig. 2. Back-transformed and interpolated LR model salinity predictions, 0–0.6 m sample depth; Indio lettuce field.
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(ii) the average value of the variance ratios associated with the individual,
non-sampled survey locations, (iii) the maximum value of the variance
ratios associated with the individual, non-sampled survey locations,
(iv) the number of individual variance ratios thatwere found to be b1, and
(v) the estimated percentage of non-sampled survey locations N3 dS/m.
These statistics can be used to determine the sensitivity of the LR model
prediction variance estimates under alternative EU residual scenarios.

The results shown in Table 3 confirm that the ordinary LR model
variance formulas generally produce conservative variance estimates
if the residual errors instead exhibit a short range spatial correlation
structure. The calculated variance for the average prediction is clearly
conservative, when compared to each of the four correlated error
scenarios. More than 91% (1848 of 2028) of the individual prediction
variance estimates are also conservative when the spherical range
coefficient (θ) is set to 88 m, and over 98% of these prediction variance
estimates are conservative for θ=44. Not surprisingly, the calculated
average values for the individual variance ratios are always b1; more
importantly, the maximum values imply that the ordinary LR model
variance estimates are never under-estimated by more than 8.3%
(under the alternative assumption of an isotropic spherical correlation
structure). Finally, the recalculated percentage of survey sites N3 dS/m
changes very little, suggesting that these probability calculations are
relatively insensitive to short range residual correlation (at least in this
particular example).
Table 3
A comparison of the average relative variance estimates, variance ratios and the
probability of accidence (RIE) statistic under the SU and various EU residual
assumptions; Indio lettuce field

Variance ratio
or prediction
statistic

SU
residuals

EU residuals
(isotropic spherical covariance)

θ=range, α=(σs
2/τ2)

IID α=0.95 α=0.50

θ=88 m θ=44 m θ=88 m θ=44 m

Var(y ̄z)/τ2 0.1006 0.0802 0.0953 0.0899 0.0978
Ave var(ŷ0|SU)/var(ŷ0|EU) n/a 0.920 0.975 0.958 0.987
max Var(ŷ0|SU)/Var(ŷ0|EU) n/a 1.083 1.026 1.044 1.014
# of Variance ratiosb1 n/a 1848 1983 1848 1983
% Of survey sitesN3 dS/m 10.52% 10.35% 10.48% 10.43% 10.50%
4.2. Case Study II: Model validation tests for a salinity survey in the San
Joaquin Valley, CA

Corwin et al. (2006) describes a monitoring project undertaken to
determine spatial-temporal changes in various soil properties result-
ing from drainagewater reuse, in a 32.4-ha saline–sodic forage field in
the San Joaquin Valley, CA. Electromagnetic induction surveys and
multiple soil sampling projects have been performed in this field
Fig. 3. Year 2002 EM survey grid and soil sampling plans; San Joaquin forage field.



Table 4
Basic EM38 and soil salinity summary statistics: San Joaquin Valley forage field

Variable Units N Mean Std. Dev. Min Max

EMV mS/m 22177 380.60 81.12 114.40 638.40
EMH mS/m 22177 297.53 61.89 132.80 604.80

Variable Units Data set N Mean Std. Dev. Min Max

ECe Calibration 40 19.07 5.92 6.99 34.60
0–1.2 m dS/m Validation 60 19.74 6.31 8.36 32.48
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every three years since 1999; details concerning the various survey
protocols and sampling strategies can be found in the above
mentioned reference. The initial EM survey grid acquired in 1999
was collectedmanually across the eight paddocks within this field and
consisted of 384 EM38 horizontal and vertical survey locations. These
readings were used to generate a prediction-based sampling strategy
that selected 40 primary calibration sampling sites from these 384
grid locations (Lesch, 2005; Corwin et al., 2006).

In 2002, a mobilized EM survey was performed that resulted in the
collection of 22,177 EM survey locations. The 40 EM survey locations
within 1.5 m of the sample sites collected in 1999 were sampled again,
along with 60 additional survey sites across four of the eight paddocks
using a restricted, simple random sampling design (15 sites per
paddock, selected from Paddocks 2, 3, 6, and 7). The one restriction
incorporated into the random sampling design was that these 60
additional locations should correspond (approximately) to points on
the original 1999 surveygrid, thus insuring that the physical separation
between any two sample sites was at least 25m. Fig. 3 shows the 2002
EM survey grid, along with both soil sampling designs. Table 4 shows
the corresponding EM survey and salinity sample data summary
statistics (2002 survey/sample data). In the analysis that follows, the 0–
1.2 m bulk average salinity levels associated with these 100 sampling
locations are used to demonstrate the three regression model
validation tests discussed previously in Section 3.

The initial regression function fit to the 2002 survey data was a
natural log(ECe) / log(EM) signal only regression equation; i.e.,

ln ECið Þ ¼ β0 þ β1 x1ið Þ þ β2 x2ið Þ þ ei ð38Þ
where the x1 and x2 signal terms are defined as in Eq. (37). This model
produced an R2 of 0.775, a root MSE estimate of 0.159, a non-
significant β2 parameter estimate (t-score p-value=0.349), and a
statistically significant Moran residual test statistic (δM=2.64, p-
value=0.004). A graphical analysis of the LR model residuals (trend
and variogram plots, data not shown) suggested that the residuals
exhibited long range, low-order (quadratic) spatial trends, rather than
any short range spatial correlation structure. Thus, amodified equation
Table 5
LR model parameter estimates and associated standard errors for Eq. (39), using both
the full (n=100) and calibration only (n=40) sample sites; San Joaquin Valley forage
field

n=100
(calibration+validation samples)

n=40
(calibration samples only)

Parameter Estimate Std.Dev. Estimate Std. Dev.

β0 2.975 0.031 3.034 0.050
β1 0.244 0.018 0.246 0.034
β2 −0.027 0.015 −0.064 0.026
β3 −0.023 0.009 −0.011 0.015
β4 0.002 0.010 0.007 0.016
β5 −0.041 0.017 −0.069 0.027
β6 −0.012 0.006 −0.012 0.008

Notes: relative spatial coordinates defined as sx=(Easting−240923.5) /100 and sy=
(Northing−4009166.1) /100 in Eq. (39).
using the x1 signal data along with quadratic trend surface parameters
was re-fit to the survey data; i.e.,

ln ECið Þ ¼ β0 þ β1 x1ið Þ þ β2 sx;i
� �þ β3 sy;i

� �þ β4 sxy;i
� �þ β5 sx2 ;i

� �
þ β6 sy2 ;i

� �þ ei ð39Þ

where the latter sx and sy terms represent the relative spatial
coordinates of the 100 sampling locations. This revised model
produced an R2 of 0.811, a rootMSE estimate of 0.149, a non-significant
Moran residual test statistic (δM=0.63, p-value=0.263), and a clearly
non-significant Shapiro–Wilk normality test statistic (SW=0.9945, p-
valueN0.5). The left-hand side of Table 5 shows the corresponding
parameter estimates (and standard errors) for this estimated LRmodel.

Since the EU and normality residual assumptions appear to be
reasonable, the threemodelvalidation tests canbeused to further test the
validity of a LR equation based solely on the non-random ESAP sampling
locations. More specifically, these tests can be used to determine (i) if the
parameter estimates appear to change across the two sampling designs
(via the composite model F-test) and/or (ii) if the 40-site “calibration”
equationcanbeused topredict thevaluesof the60 “validation” sites in an
unbiasedmanner,within theprecisionof theestimated calibrationmodel
(using the joint-prediction F-test and mean-prediction t-test, respec-
tively). As discussed previously, all three of these tests can be easily
carried out in any standard LR modeling software package.

The right-hand side of Table 5 lists the parameter estimates (and
standard errors) for the LR model estimated using just the 40 non-
randomly selected calibration locations. After suitably partitioning the
data set, the composite-model parameter test was performed in SAS
using the TEST statement within the REG procedure; the corresponding
composite-model F-score was 1.86 (p=0.086). Likewise, the joint-
prediction F-test was conveniently carried out in SAS by first defining
a new blocking variable that contained a unique site identification code
for each new validation site (and a common, higher valued code for all
calibration sites), and then fitting a standard ANOCOVAmodel using the
GLM procedure. The corresponding F-score associated with this block
effect was 0.72 (p=0.864). Additionally, a single ESTIMATE statement
was used to produce the correct, mean-prediction t-score. In this
example, the corresponding t-score was found to be −1.37 (p=0.181).
Fig. 4. Observed versus predicted 0–1.2 m ln(ECe) across the 60 validation sample
locations; San Joaquin forage field.
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All three of the abovemodel validation tests produced non-significant
test results at the 0.05 significance level. These non-significant results
suggest that the salinity sample data associated with the model-based
sampling design can be used to estimate a reliable and unbiased LR
calibration equation. Additionally, these test results confirm that the ln
(ECe) values at the secondary set of validation sample locations can be
predicted within the reported accuracy and precision of the estimated LR
model. A plot of these observed versus predicted ln(ECe) values at the 60
randomly selected validation locations is shown in Fig. 4.

5. Discussion and conclusion

The preceding two case studies demonstrate two situations where
an ordinary LR model can be used in place of the more elaborate
geostatistical MLM for spatial prediction purposes. Case study 1
represents a typical example of a field scale, soil salinity study based
on a detailed EM survey (N=2040 survey sites) and a very limited set
of soil calibration samples (n=12 sites). Given the high degree of
correlation between the two data sets, an ordinary LR model can be
effectively used to produce a spatially detailed salinity map. This map
(and associated field summary statistics) can in turn be used to
address the leaching question in a cost-effective manner. Further-
more, when the variances of the prediction estimates were computed
under the SU residual assumption, we found that these variance
estimates were generally conservative under the examined alternative
(and perhaps more reasonable) EU assumptions.

Unlike the first study, in the second case study there are a sufficient
number of sampling locations to estimate some type of suitable
geostatistical MLM. In fact, our intention had been to use a more
advanced spatial linear model to assess the two sampling strategies, had
the data warranted such an approach. However, the data analysis results
suggest that the linear model residuals exhibited no detectable spatial
structure and thus a full geostatistical modeling approach was unneces-
sary. Additionally, since an ordinary LRmodeling approach could be used
here, the simpler classical model validation tests could also be employed
to assess the adequacy of the non-random spatial sampling strategy.

Clearly, there aremany applicationswhere a geostatistical MLM (or
similar geostatistical modeling technique) is obviously needed.
However, we have also found many instances where the acquired
survey / sample data suggest that a full geostatistical model is
unnecessary. The correlation of bulk soil electrical conductivity sensor
data (to various soil properties) and/or remotely sensed imagery data
(to various crop biomass or yield indices) represent two current areas
of research where ordinary LR modeling techniques often prove to be
accurate, reliable and statistically valid (Barns et al., 2003; Corwin and
Lesch, 2005; Eigenberg et al., in press). In these situations, we believe
that an ordinary LR modeling approach can be used to great
advantage, particularly when the project economics precludes the
collection of a large number of calibration sample sites.

To summarize, in this article we have reviewed the connection
between the simpler ordinary LR model and the full geostatistical MLM.
The formulas for the ordinary LR model parameter estimates and best
linear unbiased predictions have been derived under two different (SU
and EU) residual error assumptions, along with the computable linear
unbiased predictions and variance estimates under the EU error
assumption. The Moran test for detecting spatial correlation in LR
model residuals has also been discussed, in addition to three LR model
validation tests that can be derived from classical linearmodeling theory.

The two case studies highlight anddemonstrate the various parameter
estimation, response variable prediction, andmodel validation techniques
reviewed in this article. The LR modeling and prediction method arises
naturally (as a special case of the geostatistical MLM) whenever the
residual errors satisfy either the SU or EU error assumptions. Indeed,
providing the underlyingmodeling assumptions are satisfied, this simpler
modeling approach can be effectively used to describemany different soil
property/sensor data relationships, compute cost-effective spatial predic-
tions, and produce classical model parameter and/or validation tests that
are directly applicable to a broad array of spatial surveying projects.

Appendix
Definitions:
Vector ormatrix
 Description
 Dimension

Y
 Calibration data vector
 n×1

yz
 Prediction data vector
 m×1

X
 Design matrix for calibration data
 n×p

Xz
 Design matrix for prediction data
 m×p

Σ,(C)
 Spatial covariance (correlation) matrix, calibration data
 n×n

Σz,(Cz)
 Spatial covariance (correlation) matrix, prediction data
 m×m

Σyz,(Cyz)
 Spatial covariance (correlation)matrix between y and yz
 m×n

β
 Regression model parameter vector
 p×1
Proof A1. Variance of the linear unbiased predictor

Let Σz=τ2Ωz for τ2=σn
2+σ s

2, Ωz=α·Cz(θ)+(1−α)Iz and α=σ s
2/τ2 (as

discussed in the text). The variance of the linear unbiased predictor
(LUP) ŷz=Xzβ̂ under the effectively uncorrelated (EU) residual
assumption can be most easily established by first noting that

Var yz− ŷz

� � ¼ Var yz−Xz β̂
� �

¼ Var yz−Ay
� �

for A ¼ Xz XTX
� �−1

XT :

Thus,

Var yz− ŷz

� � ¼ Var yz

� �
−2 � cov yz; Ay½ �T

� �
þ A � Var yð Þ � AT

¼ Σz−2 � ΣyzAT þ τ2AAT

since under the EU assumption var(y)=τ2I. Direct substitution of the
above matrix equalities yields Eq. (16).

Proof A2. An alternative way to calculate the joint-prediction F-test

Recall that the joint-prediction F-test, as originally derived by
Lieberman (1961) is defined as

F1 ¼ rT2V
−1r2=s21

where

r2 ¼ y2−X2 β̂1 and V ¼ I2 þ X2 XT
1X1

� �−1
XT
2:

Likewise, for

y ¼ y1
y2

	 

; X ¼ X1

X2

	 

; A ¼ 0

I2

	 

;

the ANOCOVA model discussed in the text can be expressed as

y ¼ Xβ þAψþ e; Var eð Þ ¼ σ2;

where the model errors are assumed to satisfy the EU residual
assumption. To prove that the joint-prediction F-test is identically
equivalent to the ANOCOVA joint parameter test of ψ=0, it is sufficient
to show that ψ̂ =r2, Var(ψ̂)=σ2V, and σ̂2=s12.

Define Z ¼ X1 0
X2 I2

	 

and Δ ¼ β

ψ

	 

, so that the ANOCOVA equation

can be re-expressed as y=ZΔ+ε. For this model, we find that

ZTZ ¼ XT
1X1 þ XT

2X2 XT
2

X2 I2

	 

¼ A11 A12

A21 A22

	 

¼ Q

Z
Q−1 ¼ B11 B12

B21 B22
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for B11=(A11−A12A22
−1A21)−1, B12=−B11A12A22

− 1, B21=B12
T and

B22=A22
− 1+A22

−1A21B11A12A22
−1. Direct imputation of the above design

matrices yields
B11=(X1

TX1)−1, B12=(X1
TX1)−1X2

T, B21=−X2(X1
TX1)−1 and

B22= I2+X2(X1
TX1)−1X2

T.
Hence Δ̂=(ZTZ)−1ZTy is equal to

XT
1X1

� �−1
− XT

1X1
� �−1

XT
2

−X2 XT
1X1

� �−1
I2 þ X2 XT

1X1
� �−1

XT
2

" #
� XT

1 XT
2

0 I2

	 

� y1

y2

	 

¼

XT
1X1

� �−1
XT
1y1

y2−X2 XT
1X1

� �−1
XT
1y1

" #
¼ β̂1

y2−X2β̂1

" #
¼ β̂

ψ̂

" #
:

Thus, ψ̂=r2 and var(ψ̂)=σ2B22=σ2V. Additionally, since β̂= β̂1 and
the ANOCOVA model contains the same corrected degrees of freedom
as the simpler regression model fit just to the first set of sample data,
σ̂2=s12. Therefore, the two test statistics must be exactly equivalent.
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